翻訳と辞書
Words near each other
・ 杞渓・安康の戦い
・ 杞県
・ 束
・ 束 (代数学)
・ 束 (代数的構造)
・ 束 (位相幾何学)
・ 束 (単位)
・ 束 (射影幾何学)
・ 束 (数学)
・ 束 (束論)
束 (順序集合)
・ 束 (順序集合論)
・ 束(筋または神経の)
・ 束こき
・ 束になって
・ 束ね
・ 束ねる
・ 束ね積む
・ 束の間
・ 束の間の幻影


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

束 (順序集合) : ミニ英和和英辞書
束 (順序集合)[そく, つか]
=====================================
〔語彙分解〕的な部分一致の検索結果は以下の通りです。

: [そく, つか]
 【名詞】1. handbreadth 2. bundle, fasciculus, fasciculus
: [じゅん]
  1. (adj-na,n,n-suf) order 2. turn 
順序 : [じゅんじょ]
 【名詞】 1. order 2. sequence 3. procedure 
: [ついで]
 【名詞】 1. (uk) opportunity 2. occasion 
: [しゅう]
 【名詞】 1. collection 
集合 : [しゅうごう]
  1. (n,vs) (1) gathering 2. assembly 3. meeting 4. (2) (gen) (math) set 
: [ごう]
 【名詞】 1. go (approx. 0.18l or 0.33m) 

束 (順序集合) ( リダイレクト:束 (束論) ) : ウィキペディア日本語版
束 (束論)[そく]
数学における(そく、)は、任意の二元集合が一意的な上限(最小上界、二元の結びと呼ばれる)および下限(最大下界、二元の交わりと呼ばれる)を持つ半順序集合である。それと同時に、ある種の公理的恒等式を満足する代数的構造としても定義できる。二つの定義が同値であることにより、束論は順序集合論普遍代数学の双方の領域に属することとなる。さらに、半束 (semilattice) の概念は束の概念を含み、さらにハイティング代数ブール代数の概念も含む。これら束に関連する構造は全て順序集合としても代数系としても記述することができるという特徴を持つ。
== 定義 ==

=== 半順序集合としての束の定義 ===
半順序集合 (''L'', ≤) がであるとは、以下の二条件が満足されるときに言う。
; 二元の結びの存在
: ''L'' の任意の二元 ''a'', ''b'' に対して、二元集合 が結び(上限、最小上界、和) ''a'' ∨ ''b'' を持つ。
; 二元の交わりの存在
: ''L'' の任意の二元 ''a'', ''b'' に対して、二元集合 が交わり(下限、最大下界、積) ''a'' ∧ ''b'' を持つ。
これにより、∨ および ∧ は ''L'' 上の二項演算となる。最初の条件は ''L'' が結び半束 (join-semilattice) となることを主張するものであり、後の条件は ''L'' が交わり半束 (meet-semilattice) となることをいうものである。二つの演算はその順序に関して単調である。すなわち、''a''1 ≤ ''a''2 かつ ''b''1 ≤ ''b''2 ならば
: a_1\lor b_1\le a_2\lor b_2,\quad a_1\land b_1\le a_2\land b_2
がともに成り立つ。
このとき、帰納的に、束の任意の空でない有限集合に対して、その結び(上限)および交わり(下限)の存在が示せる。さらに仮定を増やせば、もっといろいろなことが言える場合もある。完備性等を参照。そういった文脈では、上記の定義をもっと別の方法、例えば適当なガロワ接続の存在によって定義することもできる(これは束に対するある種のガロワ理論的な手法である)。
有界束 (bounded lattice) は 1 で表される最大元 (greatest element, maximum, top (⊤)) および 0 で表される最小元 (least element, minimum, bottom (⊥)) を持つ束である。任意の束は最大元と最小元を付加することにより有界束とすることができる。また、空でない任意の有限束は有界である(全ての元の結びおよび交わりが最大元及び最小元を与える)。すなわち、''A'' = ならば
: \begin
1=\top &:= \bigvee A &&(=a_1\lor\cdots\lor a_n),\\
0=\bot &:= \bigwedge A &&(=a_1\land\cdots\land a_n)
\end
が成り立つ。
半順序集合が束となる必要十分条件は、任意の有限部分集合(零元集合としての空集合を含む意味で言う)が結びおよび交わりを持つことである。ここで、空集合に関する結びは最小元、空集合に関する交わりは最大元となるものと約束する。
: \bigvee\varnothing=0,\quad \bigwedge\varnothing=1.
この規約は、結びおよび交わりの結合性および可換性に整合性を持たせるためのものである。すなわち、有限集合の族の和集合の結びはそれらの集合の結びの結びに一致し、双対的に、有限集合の族の和集合の交わりがそれらの集合の交わりの交わりとなる。これは、具体的に束 ''L'' の有限部分集合を ''A'', ''B'' とすると、
:\begin
\bigvee \left( A \cup B \right) &= \left( \bigvee A \right) \vee \left( \bigvee B \right),\\
\bigwedge \left( A \cup B \right) &= \left(\bigwedge A \right) \wedge \left( \bigwedge B \right)
\end
がともに成り立つという意味である。ここで ''B'' として空集合を取ると
:\begin
\bigvee \left( A \cup \emptyset \right)
&= \left( \bigvee A \right) \vee \left( \bigvee \emptyset \right)
= \left( \bigvee A \right) \vee 0= \bigvee A,\\
\bigwedge \left( A \cup \emptyset \right)
&= \left( \bigwedge A \right) \wedge \left( \bigwedge \emptyset \right)
= \left( \bigwedge A \right) \wedge 1 = \bigwedge A
\end
となり、これは ''A'' ∪ ∅ = ''A'' であるという事実と整合する。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「束 (束論)」の詳細全文を読む

英語版ウィキペディアに対照対訳語「 Lattice (order) 」があります。




スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.